A Clustered Global Phrase Reordering Model for Statistical Machine Translation
نویسندگان
چکیده
In this paper, we present a novel global reordering model that can be incorporated into standard phrase-based statistical machine translation. Unlike previous local reordering models that emphasize the reordering of adjacent phrase pairs (Tillmann and Zhang, 2005), our model explicitly models the reordering of long distances by directly estimating the parameters from the phrase alignments of bilingual training sentences. In principle, the global phrase reordering model is conditioned on the source and target phrases that are currently being translated, and the previously translated source and target phrases. To cope with sparseness, we use N-best phrase alignments and bilingual phrase clustering, and investigate a variety of combinations of conditioning factors. Through experiments, we show, that the global reordering model significantly improves the translation accuracy of a standard Japanese-English translation task.
منابع مشابه
A Generalized Reordering Model for Phrase-Based Statistical Machine Translation
Phrase-based translation models are widely studied in statistical machine translation (SMT). However, the existing phrase-based translation models either can not deal with non-contiguous phrases or reorder phrases only by the rules without an effective reordering model. In this paper, we propose a generalized reordering model (GREM) for phrase-based statistical machine translation, which is not...
متن کاملPhrase Reordering Model Integrating Syntactic Knowledge for SMT
Reordering model is important for the statistical machine translation (SMT). Current phrase-based SMT technologies are good at capturing local reordering but not global reordering. This paper introduces syntactic knowledge to improve global reordering capability of SMT system. Syntactic knowledge such as boundary words, POS information and dependencies is used to guide phrase reordering. Not on...
متن کاملNovel Reordering Approaches in Phrase-Based Statistical Machine Translation
This paper presents novel approaches to reordering in phrase-based statistical machine translation. We perform consistent reordering of source sentences in training and estimate a statistical translation model. Using this model, we follow a phrase-based monotonic machine translation approach, for which we develop an efficient and flexible reordering framework that allows to easily introduce dif...
متن کاملA Lexicalized Reordering Model for Hierarchical Phrase-based Translation
Lexicalized reordering model plays a central role in phrase-based statistical machine translation systems. The reordering model specifies the orientation for each phrase and calculates its probability conditioned on the phrase. In this paper, we describe the necessity and the challenge of introducing such a reordering model for hierarchical phrase-based translation. To deal with the challenge, ...
متن کاملPhrase reordering for statistical machine translation based on predicate-argument structure
In this paper, we describe a novel phrase reordering model based on predicate-argument structure. Our phrase reordering method utilizes a general predicate-argument structure analyzer to reorder source language chunks based on predicate-argument structure. We explicitly model longdistance phrase alignments by reordering arguments and predicates. The reordering approach is applied as a preproces...
متن کامل