A Clustered Global Phrase Reordering Model for Statistical Machine Translation

نویسندگان

  • Masaaki Nagata
  • Kuniko Saito
  • Kazuhide Yamamoto
  • Kazuteru Ohashi
چکیده

In this paper, we present a novel global reordering model that can be incorporated into standard phrase-based statistical machine translation. Unlike previous local reordering models that emphasize the reordering of adjacent phrase pairs (Tillmann and Zhang, 2005), our model explicitly models the reordering of long distances by directly estimating the parameters from the phrase alignments of bilingual training sentences. In principle, the global phrase reordering model is conditioned on the source and target phrases that are currently being translated, and the previously translated source and target phrases. To cope with sparseness, we use N-best phrase alignments and bilingual phrase clustering, and investigate a variety of combinations of conditioning factors. Through experiments, we show, that the global reordering model significantly improves the translation accuracy of a standard Japanese-English translation task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Reordering Model for Phrase-Based Statistical Machine Translation

Phrase-based translation models are widely studied in statistical machine translation (SMT). However, the existing phrase-based translation models either can not deal with non-contiguous phrases or reorder phrases only by the rules without an effective reordering model. In this paper, we propose a generalized reordering model (GREM) for phrase-based statistical machine translation, which is not...

متن کامل

Phrase Reordering Model Integrating Syntactic Knowledge for SMT

Reordering model is important for the statistical machine translation (SMT). Current phrase-based SMT technologies are good at capturing local reordering but not global reordering. This paper introduces syntactic knowledge to improve global reordering capability of SMT system. Syntactic knowledge such as boundary words, POS information and dependencies is used to guide phrase reordering. Not on...

متن کامل

Novel Reordering Approaches in Phrase-Based Statistical Machine Translation

This paper presents novel approaches to reordering in phrase-based statistical machine translation. We perform consistent reordering of source sentences in training and estimate a statistical translation model. Using this model, we follow a phrase-based monotonic machine translation approach, for which we develop an efficient and flexible reordering framework that allows to easily introduce dif...

متن کامل

A Lexicalized Reordering Model for Hierarchical Phrase-based Translation

Lexicalized reordering model plays a central role in phrase-based statistical machine translation systems. The reordering model specifies the orientation for each phrase and calculates its probability conditioned on the phrase. In this paper, we describe the necessity and the challenge of introducing such a reordering model for hierarchical phrase-based translation. To deal with the challenge, ...

متن کامل

Phrase reordering for statistical machine translation based on predicate-argument structure

In this paper, we describe a novel phrase reordering model based on predicate-argument structure. Our phrase reordering method utilizes a general predicate-argument structure analyzer to reorder source language chunks based on predicate-argument structure. We explicitly model longdistance phrase alignments by reordering arguments and predicates. The reordering approach is applied as a preproces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006